Change of basis algorithms for surfaces in CAGD

نویسندگان

  • Suresh K. Lodha
  • Ron Goldman
چکیده

The computational complexity of general change of basis algorithms from one bivariate polynomial basis of degree n to another bivariate polynomial basis of degree n using matrix multiplication is O(n 4). Applying blossoming and duality, we derive change of basis algorithms with computational complexity O(n 3) between two important classes of polynomial bases used for representing surfaces in CAGD: B-bases and L-bases. Change of basis algorithms for B-bases follow from their blossoming property; change of basis algorithms for L-bases follow from the duality between L-bases and B-bases. The B ezier and multinomial bases are special cases of both B-bases and L-bases, so these algorithms can be used to convert between the B ezier and multinomial forms. We also show that the bivariate Horner evaluation algorithm for the multinomial basis is dual to the bivariate de Boor evaluation algorithm for B-patches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality between L-bases and B-bases

abstract L-bases and B-bases are two important classes of polynomial bases used for representing surfaces in CAGD. The B ezier and multinomial bases are special cases of both L-bases and B-bases. We establish that certain proper subclasses of bivariate Lagrange and Newton bases are L-bases and certain proper subclasses of power and Newton dual bases are B-bases. A geometric point-line duality b...

متن کامل

Gröbner Basis Methods for Algebraic Blending Surfaces in CAGD

The research on constructing algebraic blending surfaces between given surfaces is one of the most important problems in geometric modeling and computer graphics. To solve the problem better, this paper gives novel methods using theories of Gröbner bases to construct the required blending surfaces. According to the main theorems, we obtain the algorithms for constructing the blending surface, w...

متن کامل

Applying Functional Networks to Fit Data Points from B-Spline Surfaces

Recently, a powerful extension of neural networks. the so-called functionaI networks. has been introduced / I /. This kind of networks exhibits more versatility than neural networks so they can be successfully applied to several problems in Cotputer-Aided Geometric Design (CAGD). As an illustration, the simplest functional network representing tensor product surfaces is obtained. Then, function...

متن کامل

De Casteljau's algorithm is an extrapolation method

One of the most important recursive schemes in CAGD is De Casteljau's algorithm for the evaluation of Btzier curves and surfaces. Within the theory of triangular recursive schemes we discuss the De Casteljau's algorithm as a particular case, i.e. we prove that it is identical to the E-algorithm (or GNA-algorithm) in a particular frame. This result is of theoretical interest since it leads to so...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1995